
1

Title: Leveraging Ground Sensor Networks to Evaluate Satellite-Based Land Surface Phenology in Smallholder 

Farming Systems

Authors: (1) Michael Cecil a (corresponding author) mcecil@clarku.edu; 

(2) Natasha Krell b nkrell@ucsb.edu;

(3) Allan Chilenga c allanchilenga@gmail.com; 

(4) John Gitonga d rajonny@ymail.com; 

(5) Protensia Hadunka e hadunka2@illinois.edu;

(6) Andrew Zimmer f andrew.zimmer1@montana.edu; 

(7) Adam Wolf g adam@eion.team;

(8) Tom Evans h tomevans@arizona.edu; 

(9) Kelly Caylor b caylor@ucsb.edu; 

(10) Lyndon Estes a LEstes@clarku.edu 

a Clark University, Graduate School of Geography; 950 Main St., Worcester MA 01610, USA

b University of California Santa Barbara, Department of Geography; 1832 Ellison Hall, UC Santa Barbara CA 

93106-4060, USA

c Zambia Agriculture Research Institute (ZARI); Mount Makulu Central Research Station, Private Bag 7, Chilanga, 

Zambia

d Princeton Ecohydrology Lab at Mpala Research Center; P.O. Box 555 - 10400 Nanyuki, Kenya

e University of Illinois Urbana-Champaign, Agricultural & Consumer Economics, 326 Mumford Hall, 1301 W. 

Gregory Drive, Urbana IL 61801, USA

f Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717-3480, USA

g Eion Carbon; 82 Spruce St., Princeton NJ, 08542, USA

h University of Arizona, School of Geography, Development & Environment, 1064 E. Lowell Street, Tucson AZ 

85721, USA

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4880011

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



2

Title: Leveraging Ground Sensor Networks to Evaluate Satellite-Based Land Surface 

Phenology in Smallholder Farming Systems

Abstract: Satellite-derived estimates of land surface phenology (LSP) are important for 

quantifying the spatiotemporal dynamics of agricultural landscapes where LSP metrics can track 

crop growth and productivity. Previous LSP applications for agriculture have mostly been 

confined to developed countries, where fields are larger and more homogenous, and ground data 

networks are available. LSP studies from developing regions are limited and have focused on 

coarse scales without field-level comparison. This study used field-level multispectral sensors 

(Arable Marks) to quantify several key LSP metrics and compare satellite and ground-derived 

LSP timing in smallholder maize fields. The ground sensors were installed in crop fields in 

Kenya and Zambia that were managed according to typical smallholder practices, and used to 

estimate greenup, maturity, senescence, and dormancy dates. We then calculated differences 

between the ground LSP metrics and corresponding metrics from Sentinel-1, Sentinel-2, and 

VIIRS time-series, and the VIIRS Land Cover Dynamics product. We also compared the 

satellite-based LSP metrics to farmer planting and harvest dates for a subset of fields. Results 

showed that Sentinel-2 had the smallest differences among single sensor models relative to 

ground-based LSP metrics across all dates (bias-adjusted MAD 11-13 days), with multi-sensor 

models showing comparable correlation (Kendall’s ) with ground LSP metrics. Sentinel-1 and 

the VIIRS Land Cover Dynamics product were less comparable to ground-based measures due to 

high variability and missing observations, respectively. Across most sensors and models, 

correlations with ground LSP metrics were higher for late season dates (senescence, dormancy) 

compared to early season dates (greenup, maturity). For management events, single-sensor 

models had higher correlation for harvest date (highest  = 0.75), than planting date (highest  = 
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0.30). Overall the results show that satellite-derived LSP can estimate ground-based measures of 

LSP within a two week timeframe for the majority of sites. We identify multi-sensor models, 

extended ground sensor networks, and high-resolution satellite imagery as priorities for 

continued research of smallholder LSP monitoring. These results are the first evaluation of 

satellite-derived LSP metrics for smallholder agriculture comparing multiple satellite sensors and 

vegetation indices and provide a baseline performance for global, freely available satellite 

sensors. 

1. Introduction

Satellite imaging has enabled repeated sensing of Earth’s vegetation over broad spatial 

and temporal domains, enabling the assessment of crop temporal dynamics, including timing of 

key stages during annual growth cycles (Reed et al., 1994; Xin et al., 2002; Zhang et al., 2006, 

2003, 2001). Land surface phenology (LSP), the study of vegetation growth and timing via 

remote sensing, relies on vegetation index time-series and is distinguished from biological 

phenology (e.g., emergence, anthesis, and other biological growth stages). Satellite sensors with 

daily revisit times, particularly AVHRR, MODIS and VIIRS, are especially well-suited for LSP 

studies and have been used in a wide range of applications, including climate impacts (Brown et 

al., 2010), biodiversity (Viña et al., 2016), crop type mapping (Zhong et al., 2011), and 

agricultural timing and productivity (Diao, 2020; Viña et al., 2004). 

Given the importance of crop life cycle timing for understanding farmer management 

(Diao et al., 2021), crop productivity (Bolton and Friedl, 2013) , and within-field variability 

(Johansen et al., 2022), it is no surprise that agricultural applications of LSP are a primary focus 

of recent advances in the field. The field owes its foundations to studies based on the AVHRR 

and MODIS sensors (e.g., Zhang et al., 2003, 2001), which allowed for daily monitoring of 
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crops, at a resolution of 250 m - 1 km. These studies included examination of curve-fitting 

methods (Beck et al., 2006)(Zhang et al., 2003); (Beck et al., 2006)(Zhang et al., 2003), the use 

of different vegetation indices (Klosterman et al., 2014; Rocha and Shaver, 2009; Zhang et al., 

2018a), correlation with crop growth stages (Diao and Li, 2022; Shen et al., 2022; Zeng et al., 

2020), and, more recently, approaches focused on image fusion (Frantz et al., 2016; Gao et al., 

2017; Zhang et al., 2017) and near real-time monitoring (Gao and Zhang, 2021; Shen et al., 

2023). 

However, current research on agricultural LSP is primarily focused on developed 

countries, where fields are larger and more homogeneously managed, and extensive ground 

datasets exist for validation. LSP studies often use well-known ground validation datasets 

including crop progress reports (e.g., Diao, 2020; Gao et al., 2017; Shen et al., 2023; Wardlow et 

al., 2006), PhenoCam networks, (e.g., Diao and Li, 2022; Moon et al., 2019; Tran et al., 2022), 

and extensive ground-measured phenology datasets such as PEP725 in Europe (Ye et al., 2022). 

While rich validation datasets in developed countries have enabled rapid development of 

new methods, LSP data and methods may be of even greater value in developing countries where 

smallholder agriculture predominates and ground-measured data are limited (Nakalembe and 

Kerner, 2023). Smallholder agriculture represents between 20 and 50% of global food production 

(Ricciardi et al., 2018), and the need for sustainable agricultural intensification may increase in 

the future. In sub-Saharan Africa (SSA) for example, population is expected to increase while 

available arable land is diminishing (Ittersum et al., 2016). Well-validated LSP products could 

provide insights into crop growth timing and the effectiveness of farmer management 

interventions (such as response to fertilizer and seed choice) when complemented with ground-

surveys. Such information is especially valuable in smallholder contexts where farmer 
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management practices are widely varied and have substantial and region-specific impacts on 

yield variance (Cecil et al., 2023).

Satellite-based LSP has been used at varying scales to study smallholder agriculture, 

including climate impacts (Adole et al., 2018a), national crop cover mapping (Htitiou et al., 

2021), and the relation between planting date and satellite imagery using micro-satellites  (Jain et 

al., 2016).  However, there have been few comprehensive studies of LSP methods using ground 

sensor networks for field-level smallholder agriculture, analogous to the comprehensive 

examination of sensors, vegetation indices, and methods using the PhenoCam network in the US.

   Several challenges exist for remote sensing-based smallholder agriculture monitoring 

using LSP.  Beyond the aforementioned lack of ground sensor networks for validation, satellite-

based LSP faces additional limitations in tropical or sub-tropical smallholder-dominated farming 

regions such as cloud cover, as fields in regions with a well-defined rainy season may have zero 

or few clear-sky observations for sensors with intermediate revisits times (e.g., Sentinel-2, 

Landsat) (Roy et al., 2021). In addition, smallholder regions may not be fully covered even by 

global satellite sensors. For example, gaps exist in MODIS coverage at the equator (e.g., Li et al., 

2018). Also due to the expiration of one of the Sentinel-1 satellites, certain study areas (including 

sites in this study) lost coverage in  20211. Smallholder field sizes are also significantly smaller, 

and more heterogeneously managed, with farmers using multiple management strategies for 

different fields, including inter-cropping (Sheahan and Barrett, 2017), differential fertilizer 

application (Tittonell et al., 2007),  and a variety of planting dates and cultivars (Waldman et al., 

2017). Smallholder fields are significantly smaller than coarse resolution sensors such as MODIS 

and VIIRS, and may result in an increase in mixed pixels for medium resolution sensors such as 

1 See https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario 
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Landsat (Jain et al., 2017). As such, data fusion algorithms, such as STARFM (Gao et al., 2006) 

may be difficult to implement given the underlying heterogeneity of fields and persistent cloud 

cover during the growing season. 

However recent advances in smallholder agricultural monitoring suggest there is promise 

for measuring LSP in smallholder agriculture. Studies on yield mapping for smallholder maize 

farms in Kenya and Tanzania (Jin et al., 2019), sowing date and yield for smallholder wheat 

farms in India (Jain et al., 2016), yield gap assessments in India (Duncan et al., 2015), detecting 

crop rotations in Ethiopia (Kibret et al., 2020), and fodder biomass monitoring in Senegal (Diouf 

et al., 2015) suggest that satellite sensors can provide valuable insights on smallholder 

agriculture, even with the limitations outlined above. Moreover, land surface phenology metrics 

have specifically been used to map early sowing of wheat in India (Chakraborty et al., 2018), 

which may arise from farmers adapting to changing climate. In Africa, LSP signals may be 

difficult to interpret due to concurrence of climate and management effects in LSP metrics, and 

challenges in separating signals of natural and crop vegetation in rainfed systems (Bégué et al., 

2020). Evaluating differences between satellite and local, ground-derived LSP metrics is thus 

crucial to assess whether satellite sensors can effectively monitor field-level LSP, and the degree 

of variation present in the satellite metrics.

In this study, we seek to advance the capabilities for smallholder agricultural monitoring 

over large areas by answering the following key question: how well can satellite-derived LSP 

measure field-level crop dynamics in smallholder-dominated systems? To do so, we employ a 

novel network of ground-based sensors that collect continuous in-field measures of crop growth 

and phenology, thereby overcoming the lack of available ground data, and use these data to 
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evaluate the difference between ground- and satellite-derived LSP metrics for key events (e.g., 

greenup). 

 Specifically, we deployed multispectral Arable Mark sensors at maize fields in Kenya 

and Zambia that were managed under smallholder conditions. These sensors produce vegetation 

indices similar to those calculated for satellite-based multispectral sensors, at daily time-steps 

regardless of cloud conditions. The resulting VI time-series derived from Mark data provide 

precise timing of land surface phenology dates, including greenup, maturity, senescence and 

dormancy (which have precise definitions in an LSP context, see (Zhang et al., 2001). At each 

site, we calculated the difference of ground-derived LSP timing with LSP estimated from four 

freely available satellite based sources: Sentinel-1 synthetic aperture radar (SAR), Sentinel-2 and 

VIIRS surface reflectance, and the VIIRS Land Cover Dynamics product (Zhang et al., 2018c). 

We then calculated how the different satellite sensors, both separately and in combination, differ 

from ground-based Marks in estimating LSP throughout the growing season, including the 

timing of different management events. The results provide an evaluation of freely available 

sensors in their agreement with ground-measured LSP for smallholder agriculture, as well as 

estimates of sensor bias and uncertainty.

2. Methods 

To develop field-level LSP metrics for smallholder agriculture, we drew on data collected 

from Arable Mark ground sensors deployed between 2017 and 2022 in maize fields in Zambia 

and Kenya (Table 1). Further detail about the Arable Mark sensors is explained in section 2.2. 

Several Zambia field sites are managed by the Zambia Agriculture Research Institute (ZARI) as 

part of field trials, but all sites used management practices (e.g., planting date, fertilizer, cultivar 

choice) representative of smallholder farmers.
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Comparisons of satellite and ground-measured LSP were built around four LSP dates: 

greenup, maturity, senescence, and dormancy, that we extracted from smoothed VI curves using 

a threshold method. We calculated differences of LSP dates derived from Mark sensors and 

management events (planting and harvest dates) with LSP dates extracted from three satellite 

sensors: Sentinel-1, Sentinel-2, and VIIRS, as well as LSP dates from the VIIRS Land Cover 

Dynamics product. We also calculated differences of Mark LSP with LSP derived from three 

multi-sensor methods: mean, median, and a Random Forest model used to build a consensus VI. 

Finally, we outline the specific metrics used (median bias, median absolute deviation from 

median bias, and Kendall’s ) for comparison, and the steps used to assess difference when 

comparing satellite to Mark LSP dates.

2.1 Study Sites

2.1.1. Zambia

Zambia is a potential breadbasket for southern Africa (Phiri et al., 2020), as it has one of 

the larger stocks of potential arable land in Africa (Ittersum et al., 2016). The growing season for 

smallholder agriculture follows the regional rainy season, with planting in November or 

December and harvest between March and May. The study sites for Zambia come from three 

distinct Agro-ecological zones. During the 2017-18 season, Marks collected data from 15 

smallholder maize fields in Choma district2 in southern Zambia. During the 2020-21 season, 

Marks were installed in nine plots at four sites (Chilanga, Choma, Kabwe, Mufulira)  managed 

by the Zambia Agriculture Research Institute in 2020-21 in order to examine different maturing 

cultivars in different regions. Management practices (e.g., cultivar, planting date, fertilizer) at 

these sites mirrored those of local smallholders. Finally, in 2021-22, Marks were installed at nine 

2 One site was in neighboring Kalomo district.
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plots in a single site (Chilanga) to test fertilizer and cultivar interactions, using fertilizer levels 

and cultivars typical of smallholders. Planting date and harvest date were recorded for a subset of 

site-seasons. 

2.1.2. Kenya

We installed 45 Marks in Kenya between March and May 2018 in Nyeri, Meru, and 

Laikipia counties in the Mount Kenya region. The Marks were located within maize fields of 

small-scale producers who also grew household-level crops such as ground nuts, leafy green 

vegetables, and fruit, as well as kept livestock (see Krell et al., 2022) for further detail on farmer 

demographics). Some farmers also had access to irrigation water from piped networks off Mount 

Kenya, depending on water rationing from local Water Resource User Associations.

 The farmers selected to host the Marks on their farms were enrolled in a multi-year SMS 

survey program (Krell et al., 2022) and participated in annual household surveys (e.g., Guido et 

al., 2020; Krell et al., 2021). The Marks were roughly equally spatially distributed among the 75 

communities and 500+ farmers who participated in the annual household surveys (see Krell et 

al., 2021) for information on farmers selected in the surveys). The farmers were provided a 

“farmer diary” in which they recorded information such as planting date, cultivar, amount 

planted, and intercropping. The farmers then recorded their farmer management, including 

planting and harvest date, and were compensated for their participation in the program at a rate 

of 600 Kenya Shillings per week (roughly $4 USD per week).
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Table 1: Field deployment sites

Site group Number of 
site-seasons

Type of 
Farm

Start date/end date Ancillary 
data

Zambia ZARI 
trials 20-21

13 Field trials at 
4 sites using 
smallholder 
inputs. Also 3 
smallholder 
farms.

2020-11-01 to 2021-05-31 Planting, 
harvest for 
some sites

Zambia ZARI 
trials 21-22

8 Field trials at 
1 site using 
smallholder 
inputs. 

2021-11-01 to 2022-05-31 Planting, 
harvest for 
some sites

Zambia 
Choma 
survey

14 Smallholders 2017-11-01 to 2018-05-31

Kenya 109 Smallholders 2018-03-01 to present. 
Individual site-season start and 
end dates determined by curve-
smoothing.

Irrigation in 
dry season. 
Planting, 
harvest for 
some sites

2.2 Arable Marks

Arable Marks are in-situ ground sensors mounted on 3-meter poles in crop fields, 

designed by Arable Labs Inc.  Arable Marks are similar to other ground-based commercial 

sensors (e.g., Campbell). We opted for Arable Marks because of their ability to upload data via 

local cell phone networks and their cost-effectiveness for deployment. The Marks are designed to 

overcome limitations of cloud cover, revisit time, and between-date calibration of satellite 

sensors. The Marks include upward and downward facing radiometers, which can be used to 

estimate surface reflectance in seven spectral bands at a daily time-step, regardless of cloud 

conditions. The sensors include bands in the visible, red-edge, and near-infrared wavelengths, 
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allowing for comparison with commonly used satellite sensors (Landsat, Sentinel-2, MODIS, 

VIIRS, see Figure 1). Marks use solar panels for recharging (when available), and sync data with 

local cellular networks, allowing for near real-time updates on crop growth. Mark devices also 

include sensors to measure meteorological variables, including temperature, precipitation and 

barometric pressure, but these data are not used in this study. 

The spectral overlap for specific bands (e.g., red, near-infrared) is not perfect between the 

ground and satellite sensors used. We thus did not focus on direct comparison of surface 

reflectance or vegetation index (VI) values between sensors. Rather, we compared land surface 

phenology timing derived from these VI’s, which should be more robust to small discrepancies 

in wavelengths measured for different sensors. 

To process Mark data, we first calculated surface reflectance (⍴) in each band using 

equation (1), as the ratio of upwelling (uw) to downwelling (dw) radiation in band i, with values 

constrained between 0 and 1.

(1) ⍴i = uwi/dwi

To match typical satellite overpass times, we used hourly upwelling and downwelling 

data matched to the nearest hour of Sentinel-2 overpass times, typically 10 or 11 AM local time. 

After calculating surface reflectance, we derived three vegetation indices used for LSP time-

series. These VI’s were selected due to their long track-record, their use in agricultural 

applications, and their use in LSP products.

We used the two-band Enhanced Vegetation Index (EVI2, Equation 2a) (Jiang et al., 

2008) as a baseline for most of the analyses, due to its prominence as the de facto choice for 

many LSP applications. EVI2 is preferred due to its dependence on only two bands (red and 

near-infrared), and its improved performance in areas of high vegetation relative to the 
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Normalized Difference Vegetation Index (NDVI). EVI2 is the index used in the land cover 

dynamics products for both MODIS (Gray et al., 2022) and VIIRS (Zhang et al., 2018c) . EVI2  

has also been found superior to NDVI in LSP estimation when compared directly to NDVI (e.g., 

Klosterman et al., 2014; Zhang et al., 2018a). 

 NDVI (equation 2b) has been used extensively in LSP studies (e.g., Lloyd, 1990; Zhang 

et al., 2001, 2006, 2007), although it is known to saturate under high vegetation biomass (Huete 

et al., 2002), and have increased uncertainty when compared to LSP metrics derived from other 

vegetation indices (Klosterman et al., 2014; Zhang et al., 2018a).

We chose the Green Chlorophyll Index (GCVI, equation 2c) (Gitelson et al., 2003) as a 

third multispectral VI due to its different construction (using green instead of red band) and use 

in LAI estimation (Nguy-Robertson et al., 2012) and crop modeling (Lobell et al., 2015). GCVI 

has been used in smallholder agricultural contexts to study sowing date (Jain et al., 2017) and 

yield variance (Jin et al., 2017), as well as estimating LSP using high-frequency sensors in the 

US (Nieto et al., 2022).

These VI’s use the green, red, and near-infrared bands from Mark sensors (bands 2, 4, 6 

respectively).  Their formulas are listed in equations (2a-c). The band names on the right-hand 

side of the equations represent surface reflectance (⍴) in that band. 

(2a) EVI2 = 2.5 * (NIR – red)/(NIR + 2.4 * red + 1)

(2b) NDVI = (NIR – red)/(NIR + red)

(2c) GCVI = NIR/Green - 1

As a final filtering pass, we removed any observations with NA values for vegetation 

indices. Based on manual inspection of VI curves, we also removed any Mark observations with 

band 1 (blue) surface reflectance  > 0.19,  band 3 (yellow) surface reflectance  > 0.2,  or band 4 
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(red) surface reflectance  > 0.4. These values may represent observations taken indoors, when 

Marks were charging, or otherwise invalid observations. 

2.3. Satellite Sensors

We compared the Mark LSP dates with LSP dates calculated from the following satellite 

sensors: Sentinel-1, Sentinel-2, VIIRS surface reflectance (hereafter “VIIRS”), and the VIIRS 

Land Cover Dynamics (hereafter “VLCD”) product (Table 2). These datasets were selected due 

to their history of use in LSP studies, their global coverage, their current and future data 

availability, and their being freely and publicly available. Other satellite sensors (e.g., Planet) 

have been effectively used in LSP studies, such as classifying crop stage growth (Nieto et al., 

2022), but do not satisfy these conditions. 

Sentinel-1, VIIRS surface reflectance, and VLCD data were downloaded from Google 

Earth Engine (Gorelick et al., 2017). The Sentinel-2 Level-2A data were downloaded from 

Digital Earth Africa (Yuan et al., 2021) due to a longer track record of Level-2 products being 

available on its site compared to Google Earth Engine. 
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Table 2: Ground and Satellite Sensors

Sensor Spatial 
resolution

Revisit Indices used Data source

Arable Mark 10 m radius 
footprint

Hourly EVI2, NDVI, 
GCVI

Arable API

Sentinel-2 
Level-2A 
surface 
reflectance

10 m 5 days EVI2, NDVI, 
GCVI

Digital Earth 
Africa 

VIIRS surface 
reflectance 
(VNP09GA)

1 km Daily EVI2, NDVI, 
GCVI

Google Earth 
Engine

Sentinel-1 10 m 12 days for most 
sites

VH, VV Google Earth 
Engine

VIIRS Land 
Cover Dynamics 
(VNP22Q2)

500 m Extracted for 1-2 
seasons per year

LSP dates 
extracted 
directly

Google Earth 
Engine

2.3.1. Sentinel-2

Sentinel-2 imagery provides a combination of spatial and temporal resolution and global 

coverage unmatched for freely available multispectral sensors. Since the launch of twin satellites 

in 2015 and 2017, Sentinel-2 has been widely applied for agricultural studies, including LSP 

(Meroni et al., 2021; Nieto et al., 2022), and has been used in smallholder agricultural studies 

such as yield estimation (Lobell et al., 2020). Sentinel-2 has several advantages for agricultural 

monitoring, including multiple visible, red-edge, and near-infrared bands, and a finer spatial 

resolution (10-20 meters) than Landsat or VIIRS. Cloud cover nevertheless remains a primary 

obstacle for Sentinel-2 imagery in regions with pronounced rainy seasons.

We used the Level-2A surface reflectance product, and the 10 meter green, red, and NIR 

bands (bands 3, 4, 8) to calculate the indices in equation (2). We used the Scene Classification 
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(SCL) band for cloud masking, filtering to SCL values of 4 or 5, representing clear skies and 

vegetation or bare soil. As a final filtering step, observations with surface reflectance in band 1 

(blue aerosol) > 0.15 or surface reflectance in band 4 (red) greater than 0.40 were removed. 

These thresholds were determined by examining obvious outliers in VI curves at study sites. 

2.3.2. VIIRS surface reflectance

VIIRS has succeeded AVHRR and MODIS as the predominant coarse resolution (250 m 

- 1 km) sensor used for global LSP studies due to its near-daily revisit time. While these sensors 

have provided an overall picture of vegetation phenology in Africa (Brown et al., 2010; Adole et 

al., 2018a, 2018b), their spatial resolutions may be too coarse for field-level LSP extraction in 

smallholder contexts where field sizes are often less than 2 ha (Ricciardi et al., 2018). We used 

the VNP09GA surface reflectance data product (v1) at 1 km resolution and bands M4, M5, M7 

for red, green, and NIR in equation (2) to derive vegetation indices. Cloud masking was 

performed using the QF1 and QF2 bands, requiring imagery to be ‘confident clear’ with no cloud 

shadow or thin cirrus.

2.3.3 Sentinel-1

Sentinel-1 synthetic aperture radar (SAR) data has distinct advantages for crop 

monitoring in tropical and sub-tropical environments, due to its measurements not being affected 

by clouds. It has been previously been applied in smallholder contexts for crop/non-crop 

mapping (Jin et al., 2019), crop-type mapping (Kussul et al., 2017; Tricht et al., 2018), and for 

mapping crop growth stages in European crops (Khabbazan et al., 2019). 

Sentinel-1 imagery does have limitations for crop monitoring. SAR imagery is sensitive 

to physical growth as opposed to crop health, and thus may not detect crop senescence as well as 

optical sensors. SAR imagery is prone to coherent speckle noise (Oliver and Quegan, 2004), 
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requiring a larger footprint and pre-processing for analysis. Sentinel-1 backscatter is also 

affected by several factors beyond physical growth, such as soil moisture and non-crop 

vegetation. 

We examined phenology metrics for the VH and VV backscatter (converted to float). We 

also considered additional indices (equation 3) designed to reduce effects of soil moisture and 

track the parameter of interest, vegetation growth. The cross-ratio index (equation 3a) has been 

shown to track crop seasonality (Veloso et al., 2017) and the Radar Vegetation Index (Kim and 

Zyl, 2009) has also been used for crop phenophase monitoring (Holtgrave et al., 2020; Kim and 

Zyl, 2009), using a dual-polarization formulation as seen in equation (3b).

(3a) CR = VH/VV

(3b) RVI = 4 * VH/(VH + VV)

We downloaded the Sentinel-1 Ground Range Detected (GRD) data product from Google 

Earth Engine using the Python API. We exclusively used imagery taken in “Ascending” mode as 

these data were available for all sites. We also filtered imagery to only consider the most 

common look angle at each site. For the VH and VV bands, data were then converted to float and 

passed through an iterative guided filter to despeckle images (He et al., 2012). The guided filter 

had a kernel of size three and three iterations. We then calculated the CR and RVI indices 

(equation 3). During the Zambia 2021-22 season, Sentinel-1 coverage was interrupted due to the 

failure of satellite Sentinel-1B. We thus do not include these sites in the Sentinel-1 and multi-

sensor analysis.

2.3.4. VIIRS Land Cover Dynamics Product

In addition to calculating LSP dates directly from VIIRS surface reflectance, we also 

compared results with the pre-calculated land cover dynamics product VNP22Q2 (v1) (Zhang et 
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al., 2018c). The VLCD product uses EVI2 to track crop growth and a curvature based method for 

extracting phenological dates. The metrics used from the VLCD product are greenup onset, 

maturity onset, senescence onset, and dormancy onset, and are extracted based on site locations 

without any additional processing. 

The VLCD site provides these metrics for up to 2 growing seasons per year. To account 

for Kenya sites with multiple seasons, we used the following steps to match VLCD dates to a 

given site-season. (1) Each Mark LSP date was matched with the closest VLCD date of the same 

type (e.g., greenup). (2) If the Mark LSP date was absent due to missing Mark data, a different 

LSP date was used (e.g., substituting maturity date for greenup). (3) If no VLCD date of a given 

type (e.g., greenup) was found within the defined season, then an NA value was returned. 

Notably, the VLCD product may have missing metrics for certain site-seasons, limiting its 

effectiveness for tracking smallholder seasonality. 

2.4. Phenological date extraction

Curve-fitting and phenological date extraction were performed using the ‘phenofit’ 

package (Kong et al., 2022) in R. Our calculations followed the general steps outlined by Kong 

et al., including data pre-processing, growing season definition, rough and fine curve-fitting, and 

phenological metric extraction (Figure 2). Mark locations were defined by the median longitude 

and latitude of valid observations (to account for slight GPS drift). Satellite imagery were then 

extracted at Mark locations to create VI time-series after all pre-processing steps (e.g., cloud 

masking and guided filter). 

For several steps (season definition, rough-curve fitting, removing weeding signal), we 

used the Whittaker smoother (Eilers, 2003) to remove the influence of outliers and identify local 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4880011

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://app.readcube.com/library/0c202530-61d3-4562-9879-8df183773d67/all?uuid=6267418200492529&item_ids=0c202530-61d3-4562-9879-8df183773d67:72d8e253-c308-4c3e-abc1-902f5e1070c0
https://app.readcube.com/library/0c202530-61d3-4562-9879-8df183773d67/all?uuid=18494751374532525&item_ids=0c202530-61d3-4562-9879-8df183773d67:a804175f-3d10-4103-b036-2b2599506f4e
https://app.readcube.com/library/0c202530-61d3-4562-9879-8df183773d67/all?uuid=18633371959147638&item_ids=0c202530-61d3-4562-9879-8df183773d67:8c37471b-8c7d-45f6-97b2-dba4a0377a27


18

extrema. The Whittaker smoother provides a balance of data fidelity and smoothness based on a 

smoothness parameter  (Atzberger and Eilers, 2011).

2.4.1. Season definition

Prior to extracting LSP dates, we first defined season start and end dates to determine 

which observations were included in curve-fitting. For Mark time-series, we generally used all 

relevant observations for a site-season (with the exception of Kenya sites, described below). For 

satellite imagery, we initially provide a padding of two months before and after the time-series of 

Mark observations, to account for dynamics both within the growing and shoulder seasons. 

These start and end-dates are listed in Table 1, and were based on Mark curves and common 

knowledge about the timing of local growing seasons. 

For Kenya sites, Mark sensors collected data from 2018-03-20 to 2022-11-22 without 

separation for distinct seasons. To separate consecutive seasons, we first fit the Mark NDVI 

curve using a Whittaker smoother (described in section 2.4.3), with a smoothing parameter of  

= 10000. We then used a local minimum finder to separate seasons with a window size of 91 

days. These parameters were selected as they effectively separated clear growing seasons in 

Mark NDVI curves (Figure S1). The resulting split seasons matched well with the two annual 

growing seasons in Kenya (Dimou et al., 2018).

2.4.2 Weeding events and background VI padding (Mark sensors)

To maximize the use of Mark sensor data (available for a limited number of fields), 

additional preprocessing was performed to account for early season weeding events and missing 

data observations. Early season weeding events are clearly present in some fields (see Figure 2), 

and were confirmed by our colleagues at ZARI as a common practice in smallholder fields, 

especially as smallholder farmers often do not use pre-emergence herbicides. To detect weeding 
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events, we applied a Whittaker smoother to the Mark NDVI time-series with smoothing 

parameter  = 10000, and detected early season local minima meeting the following conditions: 

(i) the local min is prior to and at least 0.20 units below the season’s global max (ii) the local min 

has a local max preceding it which is at least 0.35 units and at least 0.10 units higher than the 

local min, and (iii) the local min is less than 0.60. In these cases, we truncated the Mark time-

series by removing any observations prior to the local min. The smoothing parameter and 

conditions were selected based on visual inspection of VI curves before and after truncating the 

time-series. In total 9 of 144 sites had earlier observations removed for weeding events.

Mark time-series also had gaps in coverage due to timing of Mark installation and 

removal, as Marks were typically installed after planting is complete and removed before 

harvest. For this reason, raw Mark time-series may lack observations during transitions between 

the growing and off-seasons, a critical time for LSP-based analyses. To aid in curve-fitting and 

LSP date extraction, we padded VI time-series at the start and end of growing seasons with 

estimated background values for a VI. The background values represent the estimated VI value 

in the off-season, and are different for each VI. Background values were calculated for time-

series judged ‘complete’ (by visual observation), meaning that the VI time-series covered the 

entire vegetation growing cycle. For each complete site, we calculated the mean of VI values 

within the bottom 10 percent of VI values (similar to methods in (Zhang et al., 2020), and then 

took the median of these background values across all complete sites. The final background 

values used are listed in Table 3. 
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Table 3: Background 
values used for padding in 
Mark curve-fitting.

EVI2 0.099

NDVI  0.214

GCVI  1.672

 

To pad VI time-series, we first added a 4 week gap of empty values before and after the 

Mark time-series, representing potentially missed observations. Then, 30 days of VI values at the 

dormancy level were added before and after the gaps. Padding occurred for all Mark time-series 

within the season start and end dates defined in Table 2, and occurred after weeding adjustments. 

2.4.3. Curve-fitting and phenometric extraction

Curve-fitting VI time-series is a two step process. Rough-fitting occurred first to smooth 

the time-series and remove the effect of outliers using the Whittaker smoother. We used a more 

faithful (less smooth) smoothing parameter ( = 1000) for the Mark data, which is daily and 

contains less variation than satellite data. For satellite imagery, we increase the smoothing 

parameter ( = 10000) for all curves.

After rough-fitting, fine-fitting then occurred using a double-logistic function to ensure 

that LSP date extraction is well-defined (Kong et al., 2022). We used the Beck double-logistic 

curve (Beck et al., 2006), an asymmetric double-logistic model which assumes that before and 

after-season dormancy values are identical. This curve-fitting method has been used previously 

for LSP extraction for comparing ground and satellite sensors (Diao and Li, 2022). LSP date 

extraction is performed using the threshold extraction method, where LSP dates are defined 
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based on the 15th and 90th percentiles before and after the seasonal maximum VI value. In order, 

the LSP dates are greenup onset (15th percentile before season max), maturity onset (90th 

percentile before season max), senescence onset (90th percentile after season max), and 

dormancy onset (15th percentile after season max). This phenological extraction method has 

been used extensively before, including in the MODIS land cover dynamics product (Ganguly et 

al., 2010; Zhang et al., 2006). The threshold method was selected instead of other methods (e.g., 

curvature-based extraction) because LSP dates are always defined using the threshold method.

We examined whether any sites extracted identical LSP dates for a satellite data product 

due to site proximity. For VIIRS surface reflectance, two sites (1.4%) had identical LSP dates. 

For VLCD, among sites that extracted at least one valid VLCD date, 16 sites (11.1%) had 

identical LSP dates with at least one other site. Four sites (2.8%) also had no valid VLCD dates 

extracted. All sites had distinct sets of LSP dates extracted for Sentinel-1 and Sentinel-2, except 

for 10 sites (6.9%) which did not have any Sentinel-1 LSP dates extracted due to the Sentinel-1B 

satellite failure.

2.5 Multi-sensor models

We also examined whether combining data from multiple sensors improved the ability to 

estimate LSP. We first assessed whether taking the mean or median of LSP estimates from 

separate sensors affected the differences in LSP compared to ground-based estimates. The mean 

and median were taken from Sentinel-2, VIIRS, and Sentinel-1 indices listed in Table 2 (8 

indices total). 

 We also developed a Random Forests (Breiman, 2001) model to estimate LSP timing. 

The model used the rough-fit curves from the 8 satellite-based VI’s as model predictors, and the 

rough-fit Mark EVI2 as the dependent variable. We included only the VH and VV derived LSP 
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dates for Sentinel-1 due to their superior correlation with ground LSP dates compared to the CR 

and RVI LSP metrics. We grouped sites based on the four groupings in Table 1. To avoid over-

fitting, we excluded sites in a specified group from model training when estimating the LSP for 

sites in the specified group. We then used the Random Forest model, built separately for each 

group, to estimate a ‘consensus’ VI using the rough-fit satellite VI’s for that site. We extracted 

LSP dates from the ‘consensus’ VI using the same threshold method defined above.

2.6. Ground and Satellite LSP Comparison

We assessed LSP dates for the following scenarios. We compared LSP dates for different 

VI’s of the same sensor, to assess consistency. We calculated differences of LSP dates of single-

sensor satellite data with ground LSP derived from Arable Marks. Finally, we calculated 

differences of LSP dates from both satellite and ground LSP dates to management events, 

namely planting and harvest dates.

To assess differences between two sets of LSP dates (or between one set of LSP dates 

and management events), we designated one set of LSP dates as the reference set. For the within-

sensor comparisons of different indices, the EVI2 derived LSP was the reference set for Mark, 

Sentinel-2, and VIIRS, and VH derived LSP was the reference set for Sentinel-1. For between-

sensor comparisons, Mark EVI2 LSP was the reference set. Finally, for comparisons between 

LSP dates and management events, the management event dates were used as a reference. In this 

case, we compared the LSP greenup date with planting date, and the LSP dormancy date with 

harvest date, filtering to sites with valid planting (or harvest) dates.

We used multiple methods to compare LSP dates. First, we calculated the median bias as 

the median of (target VI date - reference VI date) across all sites, with negative bias representing 

a (median) earlier LSP date for the target VI LSP date (equation 4a). We then calculated median 
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absolute deviation (MAD) to represent variation after adjusting for the median bias. This 

calculation was performed by subtracting the bias from target LSP observations, and calculating 

the median absolute deviation (equation 4b).

(4a) bias = median(LSPtarget(site) – LSPreference(site)) across all sites

(4b) bias adjusted MAD = median(abs(LSPtarget(site) – bias)) across all sites

Previous studies have shown substantial bias in LSP dates between different sensors. For 

example, biases of 5-7 days were found between PlanetScope and PhenoCam estimates of crop 

emergence and maturity derived from LSP metrics (Diao and Li, 2022), up to 10 days for 

croplands between the MODIS and VIIRS Land Cover Dynamics products (Moon et al., 2019), 

and up to 18 days between VIIRS and PhenoCam LSP timing for different land cover types 

(Zhang et al., 2018a). Even larger biases may exist between LSP dates and management events 

like planting date (up to 19 days for planting date and 28 days for harvest based on US state 

progress reports for corn (Shen et al., 2022). Such lags are to be expected given the imperfect 

correlation between crop management and growth and LSP derived metrics (Gao and Zhang, 

2021). To our knowledge, there has not been an extensive comparison of LSP timing based on 

multiple satellite sensors for smallholder agriculture.

To estimate how satellite LSP metrics correlate with corresponding Mark LSP dates, we 

calculated Kendall’s rank correlation coefficient () (Kendall, 1938) to compare LSP dates from 

different sensors, and to compare LSP dates with planting and harvest date timing. Kendall’s  is 

known to be more robust in distributions with many outliers than Pearson’s correlation 

coefficient (Dehling et al., 2012), and has been used previously in phenological studies (Jong et 

al., 2011). 

3. Results
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3.1. Within-sensor comparison

Overall, LSP dates and season lengths were largely consistent when comparing indices 

from the same sensor. For multispectral satellite sensors (Sentinel-2 and VIIRS), the bias and 

MAD for LSP dates were 6 days or less between different indices (Table S1), and the bias and 

MAD for season and sub-season lengths were 9 days or less (Table S2). Small magnitude biases 

in LSP dates did exist for different VIs of the same satellite sensor, generally not exceeding 4 

days (Table S1). LSP dates from NDVI had slightly longer season length and GCVI dates had 

slightly shorter length compared to EVI2 for Sentinel-2 and VIIRS (Table S2). For Sentinel-1, 

VH and VV backscatter had small biases (2-5 days) with moderate variability (MAD between 7-

13 days). 

The biases and MAD for different VI’s of the Mark ground sensor were slightly higher, 

up to 8 days. For season length, the Mark NDVI had substantially longer season length; the full-

season length for Mark NDVI was, at the median, 18 days longer than the Mark EVI2 full season 

length. Mark GCVI season and sub-season lengths were more comparable to Mark EVI2 (bias of 

6 days or less). The larger shifts for Mark VI’s may have been due to a larger discrepancy in 

time-series of different VI’s for the ground Mark sensor compared to satellite sensor, or due to 

the effects of padding VI time-series.

Overall, the magnitude of variations for different multispectral VI’s was generally less 

than one week for both bias and MAD. For this reason, in subsequent sections we provide results 

for a single VI per sensor, except when noted otherwise. For Sentinel-2, VIIRS, and Mark 

sensors, we selected EVI2 for its consistency with other LSP studies and data products, and 

because LSP timing for EVI2 was intermediate between NDVI and GCVI LSP timing. For 

Sentinel-1, we selected VH backscatter converted to float as the reference index. 
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3.2. Satellite to Mark Comparison

3.2.1. Shifts in LSP Dates and Season Length

The shifts between satellite and Mark LSP were far larger than the within-sensor 

comparison in the previous section. Among satellite sensors, Sentinel-2 had the lowest MAD for 

all LSP dates (11-13 days, Table 4) and sub-season durations (9-20 days, Table 5), indicating 

that Sentinel-2 LSP was most consistent when compared to Mark LSP. Sentinel-2 LSP showed 

an increased season length compared to Mark LSP, with earlier greenup and maturity dates, and 

later senescence and dormancy dates. At the median level, Sentinel-2 length of season was 40 

days longer than Mark length of season.

VIIRS LSP exhibited an even more extreme lengthening of season. At the median level, 

VIIRS full season length was 65 days longer compared to the Mark. VIIRS LSP dates had a 

higher MAD (18-25 days) than Sentinel-2 when compared with Mark LSP dates. Similar to 

Sentinel-2, early season VIIRS LSP dates (greenup, maturity) were shifted earlier, and late 

season LSP dates (senescence, dormancy) were shifted later compared to the Mark. 

Sentinel-1 LSP dates had higher bias-adjusted MAD ranging from 22-34 days. This high 

variability is likely not usable for agricultural monitoring, implying that Sentinel-1 cannot 

provide consistent LSP timing on its own. 

VLCD dates had the lowest bias (0-6 days) of any satellite-based LSP, and may provide 

the most accurate representation of ground-measured LSP without bias adjustment. VLCD also 

had low bias for season duration, with a full season length 1.5 days shorter than the Mark. The 

MAD values for VLCD LSP dates (16-21 days) (Table 4) were intermediate between Sentinel-2 

(11-13-days) and VIIRS surface reflectance (18-25 days), and higher than either sensor for full 

season length (Table 5). 
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A critical limitation of VLCD data is that certain sites did not have any LSP dates 

extracted. This absence occurred because certain years had no data in the VLCD product, or 

because the VLCD only detected dates for a primary season that did not overlap with a site’s 

growing season. VLCD coverage rate for greenup was 67%, implying that VLCD had no 

recorded LSP date for greenup at any time during the growing season for 33% of site-seasons. 

For the maturity, senescence and dormancy dates, the coverage rate was 80%, 85%, and 40%, 

respectively. In total 119 of 144 sites (82.6%) were missing a valid VLCD date for at least one of 

the four LSP dates extracted.

Table 4 Sensor timing (SSA) compared to Mark EVI2 timing. Median bias (MAD from bias) 
compared to Mark EVI2 LSP.

Sensor Sensor VI Greenup  Maturity Senescence Dormancy

S2 EVI2
-17 (11) -6.5 (11.5) 12.5 (13) 17 (13)

VIIRS EVI2 -34 (18) -21 (24) 18 (20) 27 (19)

S1 VH -32 (22) -17.5 (22.5) 12 (34) 22 (24.5)

VLCD -4 (19) -5.5 (15.5) -1 (18) -1 (21)

Table 5 Sensor sub-season length (SSA) compared to Mark EVI2 timing. Median bias (MAD 
from bias) compared to Mark EVI2 LSP.

Sensor Sensor VI Early 
(G to M)

 Peak 
(M to S)

Late
(S to D)

Full
(G to D)

S2 EVI2 10 (9) 22 (17) 23 (18) 39 (18)

VIIRS EVI2 10 (14) 45.5 (26) 48 (24) 64 (23)

S1 VH 9 (14) 36.5 (28.5) 42 (23.5) 62.5 (26.5)

VLCD -3 (19.5) 15 (19) 10 (25) 4 (42.5)
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We also include the median absolute deviation without bias adjustment in Table S3 for 

LSP dates (analogous to the bias-adjusted metrics in Table 4). The non bias-adjusted MAD 

represents the typical difference between ground and satellite LSP estimates when we do not 

have ground sensors available for bias adjustment. The non bias-adjusted MAD is typically 

higher than bias-adjusted MAD, but this increase varies based on sensor and LSP date. Without 

bias adjustment, Sentinel-2 MAD increases from 11-13 days to 13-20 days, VIIRS MAD 

increases from 18-24 days to 27-35 days), and Sentinel-1 MAD increases from 22-34 days to 27-

38 days. These increases are not surprising due to the typical biases for Sentinel-2 and VIIRS 

surface reflectance. Interestingly, the VLCD MAD does not shift considerably without bias-

adjustment due to the lower biases for VLCD LSP dates (Table 4). VLCD MAD shifts do not 

exceed 1.5 days for any LSP date (Table S3). Thus without ground sensors needed for bias 

correction, the VLCD product (non bias-adjusted MAD of 17-20 days) performs similarly to 

Sentinel-2 when compared with reference LSP dates. Notably, the VLCD product is missing data 

for many sites as mentioned above.

3.2.2. LSP Proximity by Time Period

To provide a more concrete comparison of different sensors with Mark LSP, we 

calculated the percent of LSP dates for each sensor that were within a given time period of Mark 

dates. We adjusted for bias first given the large and consistent biases of satellite sensors for most 

LSP dates. 

Sentinel-2 had the highest bias-adjusted proximity with Mark LSP for all LSP dates 

(Figure 3). VIIRS surface reflectance dates had fewer sites within a given proximity, especially 

for the mid-season LSP dates (maturity and senescence). The lower proximity for VIIRS surface 
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reflectance for mid-season dates may be due to higher cloud rates during the peak of the rainy 

season, and higher within-pixel variability in mid-season crop timing compared to greenup and 

dormancy dates. Sentinel-1 had the lowest proximity, except for maturity, where VIIRS and 

Sentinel-1 performed comparably. The performance of VLCD is difficult to assess due to 

missing observations for certain site-seasons, meaning that the set of sites used for VLCD is 

substantially smaller (e.g., 102 sites for maturity) compared to other sensors (128 sites for 

Sentinel-2 and VIIRS maturity). Among these sites, VLCD did show comparable or slightly 

higher proximity with ground LSP when compared to VIIRS surface reflectance for maturity and 

senescence. 

3.2.3. Patterns in Full Season Duration

A major pattern seen when comparing LSP-based season lengths is that full season length 

is 39 and 64 days longer for Sentinel-2 and VIIRS surface reflectance, respectively (at the 

median), when compared to Mark derived season length (Table 5). This pattern is fairly 

consistent for SSA sites with MAD values of 18 and 23 days respectively for Sentinel-2 and 

VIIRS surface reflectance. Accounting for these seasonal length shifts is thus essential to link 

field-measured and satellite LSP. A comparison of full-season lengths for all sites is shown in 

Figure 4 (top), which shows the fairly consistent offsets in season length between sensors. 

Dashed lines represent the median increase in season length above the 1:1 line: 39 days for 

Sentinel-2 and 64 days for VIIRS. 

Figure 4 (bottom) displays the raw observations, rough-fit curve, and extracted LSP dates 

for Mark (orange), Sentinel-2 (green), and VIIRS surface reflectance (blue) EVI2 (rescaled) at a 

single Zambia site. The VIIRS time-series lacks observations near and before season peak, 

resulting in earlier dates for greenup and maturity compared to the Mark. These early LSP dates 
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may in fact be capturing a weeding signal, and not the crop signal, as this site had Mark 

observations truncated due to weeding. The Sentinel-2 time-series also had a large gap during 

early and peak season, resulting in an earlier greenup date after curve-fitting. VIIRS and 

Sentinel-2 had similar late-season time-series and extracted senescence and dormancy dates. For 

both VIIRS and Sentinel-2, the late season decline in EVI2 occurred later and more gradually 

when compared to the Mark time-series. Mark sensors, potentially due to their proximity and 

clear crop signal, detect a much sharper decline in late season EVI2.

3.2.4. Explanatory Power of Satellite LSP

We calculated Kendall’s  to assess the strength of correlations between satellite and 

Mark LSP metrics. We included results for a single VI per sensor, as well as multi-sensor mean, 

median, and Random Forest models (Table 6). Extended results for all VI’s, including red-edge 

and SWIR based VI’s (and their formulas) are in Table S4. To assure we compared the same set 

of sites for all sensors, we excluded Zambia 2021-22 sites that did not have Sentinel-1 imagery 

and thus could not be included in multi-sensor models. We also did not include results for the 

VLCD product due to many sites lacking VLCD LSP data. 

Sentinel-2 had slightly higher  values than VIIRS EVI2 when compared with Mark LSP 

dates (Table 6). Sentinel-1 had the lowest correlation with ground-measured LSP averaged 

across all LSP dates (average  = 0.38), although it performed better in predicting late-season 

dates. 

Multi-sensor LSP dates had comparable or slightly higher  values compared to single-

sensor LSP dates (Table 6). Satellite median and a Random Forest model including splined 

inputs had highest correlation with Mark LSP dates (average  = 0.63). These two models had 

slightly higher correlation compared to the single-sensor model with highest correlation, 
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Sentinel-2 EVI2 ( = 0.54).  For all sensors/models, early-season LSP dates (greenup and 

maturity) had lower  values than late-season dates (senescence and dormancy).

Table 6: Single-sensor  for each LSP date and average across all LSP dates. 
In all cases, the sensor LSP was compared with Mark EVI2 LSP.  The 
highest single-sensor (top) and multi-sensor (bottom)  for each column is 
bolded.

Sensor/model Greenup Maturity Senescence Dormancy Average

Single Sensor

Sentinel-2 EVI2 0.51 0.54 0.7 0.72 0.62
VIIRS EVI2 0.43 0.46 0.66 0.71 0.57
Sentinel-1 VH 0.38 0.5 0.58 0.68 0.54

Multi-sensor  

Random Forest 0.54 0.61 0.68 0.69 0.63
RF Spline 0.53 0.61 0.67 0.69 0.62
Satellite Median 0.5 0.55 0.72 0.76 0.63
Satellite Mean 0.47 0.54 0.7 0.74 0.62

3.3. LSP Timing Compared to Management Events

A subset of sites had planting (n = 40) and harvest (n = 29) date recorded. This number of 

observations is small, but did allow for an initial assessment of differences between satellite LSP 

and both planting and harvest dates. Previous literature has linked planting dates to sensor 

greenup, and harvest dates to sensor dormancy (see Gao and Zhang, 2021). We thus used similar 

methods to the previous section, substituting planting and harvest dates as the “reference” dates 

for comparison. Table 7 lists the median bias and MAD comparing sensor greenup to planting 

date, and sensor dormancy to harvest date. A negative bias implies that the median LSP date 

(e.g., greenup) occurs before the management date (e.g., planting). We excluded VLCD from this 

analysis due to the number of VLCD seasons with missing observations.
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Table 7:  Sensor timing (SSA) compared to management events, displaying median bias (MAD 
from bias) for sensor LSP dates (greenup for Planting, dormancy for Harvest) compared to 
management events. Positive bias means that the LSP date (e.g., greenup) occurred after the 
management event (Planting) at the median level.

Sensor VI Bias (MAD) 
Greenup -  Planting 
Date

Bias (MAD) 
Dormancy - Harvest 
Date

Mark EVI2 26 (13) 0 (21)

S2 EVI2 0.5 (15) 13 (25)

VIIRS EVI2 -8 (13.5) 27 (21)

S1 VH/VV -13 (29.5) 21.5 (21.5)

For planting date, the Mark sensor had a large positive bias, indicating that greenup 

occurred, at the median level, 26 days after planting. This lag is to be expected if greenup is due 

predominantly to crop signal and not due to weeds or surrounding vegetation. Mark, Sentinel-2, 

and VIIRS had comparable MAD (13-15 days), while the high MAD for Sentinel-1 (29.5 days) 

indicated that it is not effective for tracking planting activities using LSP. Sentinel-1, Sentinel-2, 

and VIIRS all had lower bias (≤ 13 days) compared to Mark (26 days). However, this low bias 

should not be interpreted as higher accuracy, as a delay of several weeks between planting and 

LSP greenup is expected. For example, a delay of 19 days was seen between crop emergence and 

LSP greenup for US corn and soybean (Diao and Li, 2022), although this delay can be dependent 

on the LSP extraction method (Gao et al., 2021).

For harvest date, Mark dormancy had a low bias (0 days) and a higher MAD when 

compared to planting (21 days). The higher MAD for Mark in harvest date indicates that it is 

more difficult to track than planting date. Among satellite sensors, VIIRS EVI2, Mark EVI 2, 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4880011

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://app.readcube.com/library/0c202530-61d3-4562-9879-8df183773d67/all?uuid=015308985784397322&item_ids=0c202530-61d3-4562-9879-8df183773d67:790cff82-8fbd-4a09-a6fd-f358eca8546f
https://app.readcube.com/library/0c202530-61d3-4562-9879-8df183773d67/all?uuid=959539788378656&item_ids=0c202530-61d3-4562-9879-8df183773d67:9648e022-7346-446f-a97a-80408e328499


32

and Sentinel-1 VH had the lowest MAD (21 days). Sentinel-2 had a higher MAD for harvest date 

(25 days), indicating the difficulty of detecting harvest at the field level. Interestingly, the MAD 

for Sentinel-1 is lower for harvest (21.5 days) than for planting (29.5 days). 

We also calculated the percent of sites where the LSP dates are within a given time 

period to the management event, after bias adjustment (Figure 5). Sentinel-2 and VIIRS had 

similar proximity for planting date (behind Mark), while VIIRS had the highest proximity among 

satellite sensors for harvest date. The high proximity of VIIRS for tracking harvest date (even 

higher than Marks for time periods of 10, 20 days), is worth noting, although its cause is unclear. 

Sentinel-1 again had the fewest sites within a given proximity, although Sentinel-1 did perform 

better at tracking harvest compared to planting date.

Finally, we examined the correlation of Mark LSP dates with planting and harvest dates. 

The  values for harvest were far higher than for planting dates for all sensors/methods (Tables 8, 

S5). The highest  for planting date was for the single-sensor VIIRS GCVI, while Sentinel-2 

EVI2 had highest correlation with harvest date (EVI2,  = 0.75). 
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Table 8:  for each planting and harvest date 
using satellite derived greenup and dormancy 
date, respectively. The highest single-sensor 
(top) and multi-sensor (bottom)  for each 
column is bolded.

VI/Model type Planting Harvest

Single sensor

S2 EVI2 0.23 0.75

VIIRS EVI2 0.2 0.66

S1 CR 0.05 0.66

Multi-sensor

Random Forest 0.2 0.66

RF Spline 0.21 0.66

Satellite Median 0.21 0.64

Satellite Mean
0.22 0.65

4. Discussion

This study leads to several clear findings on LSP at smallholder maize sites in SSA, and 

provides new insight into the differences in how satellite-based LSP measurements vary 

compared to ground measurements. For regional policy-makers, the results detail consistent 

biases of satellite-derived LSP, allowing for a more robust interpretation of satellite-derived LSP 

dates and their uncertainty. In particular, satellite-derived LSP shifts can be used to identify 

where farmers are shifting management practices (Chakraborty et al., 2018), particularly when 

using higher-resolution imagery (e.g., Sentinel-2) less prone to mixed-pixel signals in areas with 

high management heterogeneity (Waldman et al., 2017; Bégué et al., 2020). We also assessed 
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how satellite based vegetation indices using different spectral bands (e.g., near infrared in 

combination with red, green, red-edge, or short-wave infrared) compare with ground-based LSP, 

as previous studies have recommended examining VI’s from different spectral regions (Misra et 

al., 2020). 

4.1 VI and Sensor comparison

LSP based on different VI’s from the same satellite sensor had differences in timing of 

less than three days (Table S1). Our study reinforced the use of EVI2 as the reference VI for 

agricultural LSP, such as its use data products like VLCD (Zhang et al., 2018c). For Sentinel-2 

and VIIRS, EVI2 and NDVI had nearly equivalent correlation with ground-based LSP metrics 

(Table S4), similar to previous studies that found minimal differences in explanatory power for 

VIIRS EVI2 and NDVI (Zhang et al., 2018a). For both Sentinel-2 and VIIRS, EVI2 LSP dates 

had intermediate growing season length compared to NDVI (longer) and GCVI (shorter) (Table 

S2). Previous agricultural focused studies have found advantages of green-band indices such as 

GCVI (Peter et al., 2020). However, our results showed that Sentinel-2 and VIIRS LSP dates 

derived from red-based indices (EVI2, NDVI) had slightly higher correlation with ground-

measured LSP dates as compared to LSP dates derived from GCVI for the same sensor (Table 

S5).

 For Sentinel-2, we also examined red-edge and SWIR based indices, per 

recommendations based on a previous review of phenological studies (Misra et al., 2020), but 

did not find improved correspondence with Mark LSP metrics for these indices. The red-edge 

based Leaf Chlorophyll Index (LCI, average  = 0.61) had similar relationships with Mark LSP 

as those calculated from Sentinel-2 EVI2 and NDVI (average  = 0.62) (Table S4). SWIR-based 

indices had slightly lower correlations, for example the Normalized Difference Moisture Index 
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(NDMI, average  = 0.59). Overall, we found similar correlation with Mark LSP for Sentinel-2 

indices using several spectral bands (green, red, red-edge, SWIR) in addition to NIR bands, with 

average τ ranging from 0.59 to 0.62 (Table S4). with highest  for Sentinel-2 NDVI and EVI2.

 For Sentinel-1, VH backscatter had the highest average correlation with ground-

measured LSP ( = 0.54), followed by VV backscatter (average  = 0.49) while the calculated 

indices CR and RVI had lower correlation (average  = 0.38, 0.37 respectively). These results are 

similar to a previous study on maize growth stages in Germany (Holtgrave et al., 2020) where 

VH backscatter had higher correlation than VV backscatter or RVI with optical indices for all 

maize growth stages. 

Compared to differences in LSP dates arising from the VI choice, far larger differences 

were found when comparing LSP metrics from different sensors and data products. A novel 

aspect of our study is the comparison of LSP metrics extracted from both individual sensors and 

from multi-sensor methods. A previous review of cropping practice mapping found that most 

studies only used a single sensor (Bégué et al., 2018). The satellite sensors used in this study 

have differing spatial resolution, revisit time, and cloud-penetrating ability, and our results 

demonstrated clear differences in the biases and variations among these sensors for LSP 

monitoring.

Sentinel-2 based LSP generally had the smallest differences among satellite sensors when 

compared to ground-measured LSP metrics or planting and harvest dates. The MAD for 

Sentinel-2 LSP was lowest after adjusting for bias (11-13 days) compared to VIIRS (18-24 

days), and Sentinel-1 (22-34 days), indicating its LSP metrics have the lowest difference with 

ground-measured metrics, potentially due to the higher spatial resolution of Sentinel-2 compared 

to VIIRS and VLCD. 
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Length of season calculated from LSP planting and harvesting dates also progressively 

increased from ground-sensors to Sentinel-2 to VIIRS, indicating that the sensors with finer 

spatial resolutions may yield shorter calculated season lengths. A similar comparison for US corn 

fields found slightly longer season length for MODIS as compared to Sentinel-2 (4 day increase), 

although the magnitude was far larger for winter wheat fields (40 day increase) (Pipia et al., 

2022). For comparison, our study showed a 25 day increase in season length from Sentinel-2 to 

VIIRS for smallholder maize fields (Table 5). 

Sentinel-1 had the highest MAD of any sensor or data product (Table 4). Like other 

satellite sensors, Sentinel-1 had stronger correlation with ground LSP metrics for late season 

events (senescence, dormancy, harvest) compared to early season events (greenup, maturity, 

planting) (Table S4). Sentinel-1 has been used in LSP studies for European crops (Holtgrave et 

al., 2020; Khabbazan et al., 2019; Meroni et al., 2021). Meroni et al. compared LSP metrics from 

Sentinel-1 CR and Sentinel-2 NDVI for European maize and found Pearson’s correlations of 

0.57, 0.52, and 0.42 for start, end, and peak season timing between the two sensors, albeit with 

biases generally of 10-20 days between LSP dates for the two sensors (Meroni et al., 2021). 

Holtgrave found that VH backscatter correlated highest with Sentinel-2 indices (NDVI, NDWI, 

and a red-edge index, PSRI3), with Pearson’s correlations of values of 0.69-0.83 for different 

maize growth stages, substantially higher than the  correlation between Sentinel-1 VH and 

ground LSP metrics in our study (0.38-0.68). For reference, we also calculated Pearson’s 

correlation for Sentinel-1 VH and found values of 0.39 to 0.85, with an average Pearson’s 

correlation of 0.65, still below the range found in Meroni’s study. Our study found that VH and 

VV outperformed the cross-ratio (Table S4), but did not have τ values as high as most Sentinel-2 

3 PSRI = Plant Senescence Reflectance Index. (B4-B2)/B6
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and VIIRS vegetation indices. Sentinel-1 derived LSP may be less effective in smallholder 

environments as compared to the above European-based studies, as small field size can 

complicate data cleaning steps like speckle filtering or taking field-level medians (as in 

Holtgrave et al., 2020; Khabbazan et al., 2019; Meroni et al., 2021). We conclude that for our 

study’s smallholder sites, Sentinel-1 and Sentinel-2 LSP are not directly comparable or 

interchangeable.

VLCD results notably had the lowest magnitude biases, albeit with high missing data 

rates (15%-60% of site-seasons, depending on the specific LSP metric). Low magnitude biases 

are desirable in use cases where ground-measured LSP metrics are not available for bias-

correction. In such cases, VLCD may be an effective data product for LSP monitoring. The low 

biases may be due to effective processing methods for VLCD (Zhang et al., 2018c) that 

minimize the influence of cloud cover and missing data, despite the coarse resolution of VLCD 

that may result in multiple fields being included within each VLCD pixel. We also note that 

VLCD provided a relatively accurate representation of season lengths (Table 5), without the 

stretched seasonality seen for Sentinel-2 and VIIRS surface reflectance.

When calculating MAD values without bias-adjustment (Table S3), the VLCD MAD 

values (17-20 days) were similar to those for Sentinel-2 (13-20 days). Thus VLCD may be a 

viable alternative for LSP monitoring when consistent biases between satellite and ground LSP 

dates are unknown. End-users seeking to use VLCD for smallholder monitoring should first 

examine the historical VLCD observation rate for previous seasons before relying upon it for 

monitoring. In our study, only 25 of 144 sites (17.4%) had valid VLCD observations for all four 

LSP dates. 
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We place our study’s results in the context of US based studies due to the lack of 

previous field-level LSP studies in SSA. Notably the results of these US studies do not perfectly 

align with our findings on bias direction and early-season vs. late-season timing. A US study 

using PhenoCam found a high R2 for croplands (between 0.69 and 0.83), and essentially no 

difference in using NDVI or EVI2 based LSP from VIIRS (Zhang et al., 2018b). Notably, in that 

study the highest R2 was for greenup phase (SOS), while in our study late-season LSP dates 

(senescence, dormancy) had higher  values. Other US based studies have found that multi-

sensor image fusion improved LSP estimates (e.g., Moon et al., 2019; Zhang et al., 2020; Shen et 

al., 2022; Diao and Li, 2022; Tran et al., 2022). A study across 12 Midwestern US states found 

high association (typically R2  0.9) between HLS-VIIRS LSP and field crop progress reports 

provided by the National Agricultural Statistics Service (NASS) (Shen et al., 2022). The authors 

found a bias of 10 days between planting and greenup, and -18 days between harvest and 

dormancy (i.e., dormancy occurs before harvest). These results do not match our study’s 

findings, where Sentinel-2 had a small positive bias (2 days, Table 7) between planting and 

greenup, and a larger positive bias (18 days, Table 7) between harvest and dormancy, indicating 

dormancy occurred after harvest. These discrepancies between US studies and our study’s results 

could be due to different management practices in the US vs smallholder sites, including early 

weeding events and later harvest (after crop has yellowed) for smallholder sites. 

Synthesizing the above studies, we see that the biases between ground and satellite LSP 

dates are vastly different for US and smallholder agriculture, indicating that approaches used in 

US studies may not be transferable to smallholder settings. Several of the US studies found 

substantial improvements due to sensor-level image fusion methods beyond the scope of this 

paper. We used simpler fusion methods that found small improvements in LSP estimation 
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(average  = 0.63 for spline Random Forest and satellite median, compared to  = 0.62 for 

Sentinel-2 EVI2). Additional research and data could help identify for which use-cases and 

which model type (e.g., Random Forest) would best exploit the complementary advantages of 

multiple sensors for smallholder agriculture.

4.2 Limitations and Next Steps

Land surface phenology and downstream products for smallholder systems will require a 

combination of (i) high quality ground validation datasets, (ii) appropriate satellite imagery, and 

(iii) appropriate EO models. The combination of these three factors has led to rapid advancement 

of LSP modeling and applications, particularly in the US, while the development of these 

methods in smallholder contexts is more limited. There are several ways in which future studies 

can build upon this study’s results and expand our understanding of LSP metrics for smallholder 

agriculture monitoring.

4.2.1 Ground Data Networks and Timely Management Observations

This study used a network of Arable Marks to provide continuous measurements of crop 

growth. While the Marks provided valuable field-level measurements, our network only included 

fields in two countries and a limited number of site-seasons (n = 144). Also, as with all field-

based sensors, the Marks have a limited sensing footprint (10 meter diameter), and furthermore 

had to be installed after planting and removed before harvest, which, combined with the need to 

be recharged, resulted in data gaps. We used curve-fitting and a padding method to provide 

realistic estimates of VI curves for these gaps (Figure 2), but ideally the sensors would also 

record observations during shoulder seasons and throughout the growing season without 

interruption. We also lacked ground data on crop growth stages and comprehensive management 
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decisions at a number of sites (e.g., weeding, fertilizer, maize cultivar, irrigation). Planting and 

harvest dates were also recorded only for a limited number of sites.

Ideally, continental scale networks like PhenoCam and Fluxnet could be constructed for 

smallholder sites in Africa, as there are few, if any, active sites in Africa currently for these 

networks.4  More flexibly, data sensors within the internet-of-things (IoT) umbrella could 

provide opportunities for decentralized data collection for smallholder agriculture (Antony et al., 

2020; Bayih et al., 2022; Routray et al., 2019). Several examples of IoT data collection for 

smallholder agriculture exist, including the use of smartphone sensors for estimating crop 

phenology (Hufkens et al., 2019; Tonnang et al., 2020), and monitoring crop progress and 

management through mobile phone-based surveys (Giroux et al., 2019). 

In an overview of Earth Observation agricultural monitoring systems in SSA, Nakalembe 

stresses the importance of investing in “consistent representative digital ground data through 

networks of observers to provide the data required to train EO-based systems” (Nakalembe, 

2020). To the extent possible, ground datasets should be well-documented, spatially referenced, 

and, when feasible, shared. Standardizing and sharing observations from ground-based sensors 

and surveys (to the extent possible due to privacy considerations) can improve comparisons 

between different sensor types, and expand the pool of ground observations for use in LSP 

studies. 

We also note that some of the planting and harvest dates recorded (for Kenya sites in 

particular) were self-reported, and previous studies have found that such self-reported 

observations may be unreliable if not collected soon after the event (see Jain et al., 2016). Self-

reported observations may also result in unreliable downstream models if used for calibration 

4 See maps at https://fluxnet.org/sites/site-summary/ , https://phenocam.nau.edu/webcam/network/map/ 
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(Paliwal and Jain, 2020). We thus interpret results on planting and harvest dates with caution, 

and recommend more expansive and timely collection of management practices in conjunction 

with extended ground sensor networks.

4.2.2. Improved sensor resolution and image fusion

Our study used freely available satellite sensors and primarily derived LSP dates from  

single sensor methods. However even the best performing sensor, Sentinel-2, still may have too 

coarse a resolution (10 meters) for small fields due to mixed pixel effects for field boundary 

pixels and the presence of buildings, trees and other vegetation cover. The revisit time for 

Sentinel-2 (5 days) also still allows for large gaps in time-series due to frequent cloud cover. 

Commercial satellite sensors like PlanetScope and image fusion methods improve spatial and 

temporal resolution, and have proven effective for LSP monitoring in the US and Europe, but 

need to be examined for smallholder agriculture.

The high-resolution (2m) SkySat sensor has been used to estimate sowing date and yield 

for smallholder wheat fields in India, using GCVI (Jain et al., 2016). The study found R2 values 

of 0.41 and 0.62 for sowing date estimation, based on GCVI values at specific observation dates, 

improving on the low correlation of Sentinel-2 GCVI with planting date in this study ( = 0.39, 

Table S5), potentially due to SkySat’s higher resolution. In smallholder contexts, PlanetScope 

imagery, with a near daily revisit and 3-4 meter resolution, has been used to provide high-

resolution crop field boundaries in Ghana (Estes et al., 2022). There thus is promise to use the 

Planet constellation for LSP monitoring in smallholder contexts, particularly the Planet Fusion 

product which is designed to gap-fill cloudy or missing scenes (Planet, 2021). Planet Fusion 

imagery has been used to classify maize growth stages in the US, improving upon results based 

on Sentinel-2 imagery (Nieto et al., 2022). Future studies could examine if high-resolution 
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sensors or data fusion products effectively decrease the variability (MAD) in satellite LSP 

compared to the methods used in this study. While such products are not freely available, they 

can provide target levels of performance for satellite-based LSP, or conversely confirm that 

satellite LSP has consistent variability vis-a-vis ground measure LSP regardless of the satellite 

source. Currently the Planet Fusion product is not freely available, and has not to our knowledge 

been used to examine LSP for smallholder agriculture. 

Other image fusion methods have been applied extensively in the US to study LSP, 

typically merging coarse sensors (VIIRS, MODIS) with high revisit times with medium-

resolution sensors (Sentinel-2, Landsat) that are more infrequent (Gao et al., 2006; Luo et al., 

2018). In smallholder contexts, ESTARFM (Enhanced Spatial and Temporal Adaptive 

Reflectance Fusion Model; Zhu et al., 2010) has been modified for use in high cloud regions 

(Knauer et al., 2016), and used to calculate LSP metrics in Burkina Faso (Knauer et al., 2017). 

While an investigation of image fusion based LSP for smallholder agriculture is beyond the 

scope of this paper, these results show there is potential for image fusion methods, and that 

additional testing and validation in smallholder contexts is needed.

4.2.3. Appropriate Models for Smallholder LSP

The LSP methods used in our study, including curve-fitting, VI choice, and metric 

extraction, were based on common LSP practices that have been used in the production of 

MODIS and VIIRS Land Cover Dynamics products (Ganguly et al., 2010; Zhang et al., 2006, 

2018c). We primarily used single sensor methods and simple multi-sensor models to provide 

baselines of sensor performance. However, these standard practices may not be ideally suited for 

smallholder agriculture. High cloud cover and small field size require methods that (i) do not 
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depend on a large spatial footprint, (ii) can handle large gaps in optical time-series, and (iii) 

ideally can use multiple sensors to compensate when a single sensor has missing data. 

Machine learning models, properly designed, can meet the above requirements, and have 

shown promise in smallholder contexts, provided they are sufficiently well trained. For example, 

deep learning models have been used for crop type mapping in Ghana and Sudan (Rustowicz et 

al., 2019) and Pakistan (Khan et al., 2023), crop boundary delineation in Nigeria and Mali using 

very high resolution WorldView-3 imagery (Persello et al., 2021), and smallholder maize yield 

estimation in China (Zhang et al., 2021).

However, a review of deep learning studies focused on phenological stage mapping 

(Katal et al., 2022) found the majority of studies in the US, Europe, Australia, and New Zealand, 

and no studies based in Africa. This may be due to the high ground data requirements for 

phenological modeling, requiring data throughout the growing season. Geospatial foundation 

models (GFM) offer promise for applications with limited data on a variety of downstream tasks 

(see Jakubik et al., 2023), and may have potential for LSP modeling due to their ability to 

reconstruct missing observations. In particular, foundation models that do not require large 

spatial footprints, like the single-pixel based PRESTO (Pretrained Remote Sensing Transformer; 

Tseng et al., 2023) model, may be well-suited for small fields. Above all, these models must be 

evaluated in smallholder settings, and rely upon labeled data representing a range of realistic 

crop growth and management. This data dependence of new machine learning models again 

highlights the need for high quality ground observations in smallholder LSP monitoring.

5. Conclusion

This study provides a multi-sensor evaluation of the ability to estimate LSP over 

smallholder maize fields in Kenya and Zambia, comparing LSP timing from in situ sensors with 
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measurements derived from Sentinel-1, 2, and VIIRS. Sentinel-2 LSP performed best among 

individual sensors, although multi-sensor methods performed comparably to single sensor 

models (similar  values) in many cases and warrant further study. To support development of 

LSP models for smallholder systems, we recommend the development of ground-based sensor 

networks and datasets to create standardized reference data resources, similar to the PhenoCam 

network and Crop Progress Reports in the US. Existing datasets from crop trials and previous 

studies could provide field observations to such a database. New sensor networks based on 

ground-based phenological cameras or multispectral sensors (like the Marks in this study) can 

provide continuous reference data as well for crop growth. The variability of differences between 

Sentinel-2 and ground LSP (MAD of 11-13 days) indicates that LSP estimates may only be 

accurate within two weeks (at the median). However, this study’s methods still provide a 

foundational comparison of LSP from multiple single-sensors and multi-sensor fusion for 

smallholder agriculture and identifies potential next steps in multi-sensor modeling, machine 

learning, and ground sensor networks. Similar to the development of LSP methods in the US, 

improved smallholder LSP methods can provide critical metrics to understand regional crop 

timing, management practices, and climate variability at broad scales, provided sufficient ground 

data sets are available.
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